

Bridge Input Detection Module

Quick Start Guide

SHENZHEN INVT ELECTRIC CO., LTD.

Preface

Overview

Thank you for choosing the INVT bridge input detection module (FL3321: Single-channel bridge input detection module; FL3322: Dual-channel bridge input detection module). This module is compatible with INVT Flex series communication interface modules (such as FK1100, FK1200, and FK1300), TS600 series programmable controller, and TM700 series programmable controller. The features are as follows:

- The module supports the acquisition of single-channel or dual-channel bridge voltage input signals.
- Supports 4-wire and 6-wire bridge detection.
- Supports independent filter settings.
- Supports open wire detection and short-circuit detection functions.

This guide briefly describes the interface description, wiring examples, cable specifications, usage examples, common parameter descriptions, and common faults and solutions of the INVT bridge detection module.

Audience

Personnel with electrical professional knowledge (such as qualified electrical engineers or personnel with equivalent knowledge).

Change history

The manual is subject to change irregularly without prior notice due to product version upgrades or other reasons.

	No.	Change description	Version	Release date
ſ	1	First release.	V1.0	September 2025

202509 (V1.0) i

Contents

1 Specifications	1
2 Interface description	4
3 Wiring example	6
4 Cable specifications	7
5 Application example	8
6 Calibration	11
7 Tare function	12
8 Measurement function	13
Appendix A Parameter description	14
Appendix B Fault code	15

1 Specifications

Item			Speci	ifications			
	External input rated voltage	24VDC	(-15%-+2	0%)			
	External input rated current	0.5A					
	Backplane						
Power supply	bus rated output voltage	5VDC (4	5VDC (4.75VDC-5.25VDC)				
	Backplane bus current consumption	120mA	(Typical v	value)			
	Isolation	Isolatio	n				
	Power supply protection	Protect overcui		ainst reverse connection and			
	Name	Color	Silk screen	Definition			
	Run indicator	Green	R	On: The module is operating. Slow flashing (once every 0.5s): The module is establishing communication. Off: The module is not powered on or it is abnormal.			
Indicators	Error indicator	Red	E	Off: No abnormalities were found during module operation. Fast flashing (once every 0.1s): The module is offline. Slow flashing (once every 0.5s): No power connected externally or incorrect parameter settings.			
	Enabling status indicator	Green	C0, C1	On: The channel is enabled. Slow flashing (once every 0.5s): The input signal is out of range, beyond limits, or the channel configuration parameters are incorrect. Off: The channel is disabled.			
	Open wire detection indicator	Red	B0, B1	ON: The signal wire is open. Off: The signal wire is operating normally.			

Item			Spec	ifications		
	Short-circuit detection indicator	Red	S0, S1	On: The excitation power output is short-circuited. Off: The excitation power output is not short-circuited.		
Number of channels	One or two					
Input mode	Differential					
Voltage range	±30mVDC					
Input sensor type	4-wire or 6-wir	e bridge	sensors			
Loadcell sensitivity	(0.5/1/2/4/6) m	V/V				
Load resistance range	40–4010Ω					
Precision	$\pm 0.05\%$ FS (-2 sensitivity >	2mV/V) 5°C to - 2mV/V)	+55°C, sa	ing rate ≥ 80ms, and Loadcell mpling rate ≥ 80ms, and Loadcell idard interference conditions)		
Maximum excitation power	5V @ 250mA					
Open wire detection	Supported (signal wire)					
Over-limit detection	Supported					
Over-range detection	Supported					
Isolation method	No isolation between channels					
Certification	CE, RoHS					
	Ingress protection (IP) rating	IP20				
	Working temperature	-20°C-+	-55°C			
Environment	Working humidity	rking 10%-95% (no condensation)				
	Air	No corr	osive gas	3		
	Storage temperature	-40°C-70°C				
	Storage humidity	RH < 90%, without condensation				
	Altitude	Lower t	han 2000	0m (80kPa)		

Item		Specifications		
	Pollution degree	≤2, compliant with IEC61131-2		
	Anti- interference	2kV power cable, compliant with IEC61000-4-4		
	Electrostatic discharge level	6kVCD or 8kVAD		
	EMC anti- interference level	Zone B, IEC61131-2		
	Vibration resistance	IEC60068-2-6 5HZ-8.4Hz, vibration amplitude of 3.5mm, 8.4Hz– 150Hz, ACC of 9.8m/s², 100 minutes at each direction of X, Y, and Z (10 times and 10 minutes each time, for a total of 100 minutes)		
Impact resistance	Impact resistance	IEC60068-2-27 50m/s², 11ms, 3 times for each of 3 axes at each direction of X, Y, and Z		
Installation method	Rail installation: 35mm standard DIN rail			
Dimensions	12.5×95×105	$(W \times D \times H, unit: mm)$		

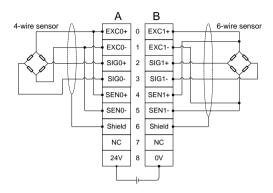

2 Interface description

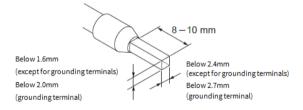
Diagram	Left signal	Left terminal	Right terminal	Right signal
The second	EXC0+	A0	В0	EXC1+
	EXC0-	A1	B1	EXC1-
	SIG0+	A2	B2	SIG1+
	SIG0-	A3	В3	SIG1-
	SEN0+	A4	B4	SEN1+
100	SEN0-	A5	B5	SEN1-
	Shield	A6	В6	Shield
	NC	A7	В7	NC
A_B	24V	A8	B8	0V

Pin	Name	Description	Specifications
		Positive terminal of the	
A0	EXC0+	excitation voltage output for	
		Channel 0	
		Positive terminal of the	
В0	EXC1+	excitation voltage output for	
		Channel 1	
A 1	FVCO	Negative terminal of the	
A1	EXCU-	excitation voltage output for Channel 0	
B1	EVC1	Negative terminal of the excitation voltage output for	
ы	LVC1-		Input form: Differential input
			Input voltage range: ±30mV
A2	SIG0+	bridge input signal for	pac vottage ranger = com.
		Channel 0	
		Positive terminal of the	
B2	SIG1+	bridge input signal for	
		Channel 1	
		Negative terminal of the	
A3	SIG0-	bridge input signal for	
		Channel 0	,
D 2	6161	Negative terminal of the	
В3	SIG1-	bridge input signal for	
		Channel 1	

Pin	Name	Description Specifications
A4		Positive terminal of the bridge feedback voltage for Channel 0
B4	SEN1+	Positive terminal of the bridge feedback voltage for Channel 1
A5		Negative terminal of the bridge feedback voltage for Channel 1
B5	SEN1-	Negative terminal of the bridge feedback voltage for Channel 1
A6	Shield	Shielding cable ground of the bridge Channel 0
B6	Shield	Shielding cable ground of the bridge Channel 1
A7	-	_
B7	-	-
A8	24V	Positive terminal of the external 24V power input Module power input:
B8	0V	Negative terminal of the 24VDC (20.4VDC–28.8VDC) external 24V power input

3 Wiring example

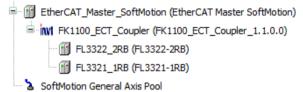
∠Note:

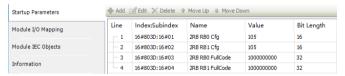

- Avoid bundling sensor cables together with power cables (high voltage and high current) or other cables that transmit strong interference signals. They should be routed separately and parallel routing should be avoided.
- The sensor and the module should be grounded at equipotential as much as possible.

4 Cable specifications

Cable material	Cable d	iameter	Crimping tool	
Cable material	GB size/mm ² AWG size/AWG		Crimping tool	
	0.3	22		
Tubulan sahia	0.5	20		
Tubular cable	0.75	18	Use a proper crimping plier.	
lug	1.0	18		
	1.5	16		

Note: The cable diameters of the tubular cable lugs in the preceding table is only for reference, which can be adjusted based on actual situations.


When using other tubular cable lugs, crimp multiple strands of cable, and the processing size requirements are as follows:


5 Application example

This chapter introduces the usage steps of the product using CODESYS as an example.

Step 1 Add the device and configure the network topology.

Step 2 In the startup parameters, configure the channel parameters according to actual requirements, including sensitivity, conversion time, and full-scale code value

Alx Cfg(x=0-7) is the channel configuration parameter of type USINT. Taking the configuration of channel 0 as an example, the data definitions are detailed in the following table of parameters.

Bit	Name	Description			
Bit0	Channel enabling	1#0: Disable			
BILU	flag	1#1: Enable			
Bit1	Tare mode	1#0: Automatic tare			
DILI		1#1: Manual tare			
		2#00: 1mV/V			
Bit3-Bit2	Sensor sensitivity	2#01: 2mV/V			
DIL3-DIL2	Sensor sensitivity	2#10: 4mV/V			
		2#11: 6mV/V			

Bit	Name	Description
		2#0000: 1ms
		2#0001: 2ms
		2#0010: 5ms
	Channel conversion	2#0011: 10ms
Bit7-Bit4	time	2#0100: 20ms
	ume	2#0101: 40ms
		2#0110: 80ms
		2#0111: 200ms
		2#1000: 400ms
Bit8	Enable enhanced	1#0: Disable
ыів	filter	1#1: Enable
D:+0	Enable open wire	1#0: Disable
Bit9	detection	1#1: Enable
Bit15-Bit10	Reserved	Reserved

For example, if the channel is enabled, tare mode is set to automatic tare, the sensor sensitivity is set to 4mV/V, the channel conversion time is set to 80ms, and the enhanced filter is disabled, then the RB Cfg value is configured as 2#0000 0000 0110 1001 (16#0069, 105 in decimal).

Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Enhanced	C	nannel co	nvorcion	Sensor sensitivity		Tare	Channel	
filter	Ci	iaillet Co	liversion	ume	Selisoi se	ensitivity	mode	enabled
0	0	0	1	1	1	0	0	1

RB.FullCode description: The full-scale code value of the channel, which can be configured by the user to correspond to the full-scale load of the channel. For example, if the full-scale load is 10kg and the full-scale code is set to 10,000,000, then the resolution is: 10kg/10,000,000=0.001g. With the current configuration, if the sampled value is 5683526, the corresponding weight is: $5683526\times0.001g=5683.526g=5.683526kg$

Note:

- Configure the channel full-scale code value according to the required resolution.
- After the full-scale code is set, the calibration value in subsequent channel gain calibration needs to be converted based on the full-scale code value.

Step 3 After completing the parameter configuration, map the program parameters in the I/O mapping interface, and perform control and sampling in the program.

Startup Parameters	Find		Filter Show all			-	Add FB for IO Chan
Module I/O Mapping	Variable	Mapping	Channel	Address	Туре	Unit	Description
			RB0_Ctrl	%QB44	USINT		RB0_Ctrl
Module IEC Objects			RB1_Ctrl	%Q845	USINT		RB1_Ctrl
Information	⊕**		RB0_GainCode	%QD12	DINT		RB0_GainCode
			RB1_GainCode	%QD13	DINT		RB1_GainCode
	⊞-**		RB0_ManualTareCode	%QD14	DINT		RB0_ManualTareCode
			RB1_ManualTareCode	%QD15	DINT		RB1_ManualTareCode
	⊕- 🦖		RB0_Status	%IB4	USINT		RB0_Status
	®- * ≱		RB1_Status	%IB5	USINT		RB1_Status
	⊕- 🦖		RB0_SampleCode	%ID2	DINT		RB0_SampleCode
	B-*		RB1_SampleCode	%ID3	DINT		RB1_SampleCode
	- ¾		RB0_TareCode	%ID4	DINT		RB0_TareCode
	B-16		RB1_TareCode	%ID5	DINT		RB1_TareCode
	- ¾		RB0_ErrId	%IW12	UINT		RB0_ErrId
	±-¥p		RB1_ErrId	%IW13	UINT		RB1_ErrId

6 Calibration

Before using the module to measure the load, perform the channel calibration first. After calibration, the channel stores the calibration data in the module's internal memory, which retains the data even when power is off. If the sensor is replaced, calibration must be performed again.

Step 1 Zero calibration

After the device is connected, apply an absolute load of 0 or a relative load of 0 (see Note 1). When the load is stable, trigger zero calibration (RB_Ctrl.bit0 rising edge). When the zero calibration complete flag (RB_Status.bit0) is set to 1, the zero calibration is completed.

Step 2 Gain calibration

After zero calibration is completed, apply a standard load, such as 8kg (78.4N, g=9.8m/s²), and set the gain code value to 8,000,000 (see Note 2). When the load is stable, enable gain calibration (RB_Ctrl.bit1 rising edge). When the gain calibration complete flag (RB Status.bit1) is set to 1, the gain calibration is completed.

✓ Note:

- If it is not possible to achieve absolute zero load during zero calibration under actual site conditions, use the current load as the relative zero load. In this case, during gain calibration, use the relative load value for calibration, and the subsequent measured values will also be relative to this load.
- According to the full-scale code conversion, for example, if the full-scale code is configured as 10kg corresponding to 10,000,000, then 8kg corresponds to 8,000,000.

7 Tare function

Tare is performed after calibration, according to the tare mode configured in RB_Cfg:

- 1. Automatic tare mode: On the rising edge of RB_Ctrl.bit2, the current measured value is taken as the tare value.
- 2. Manual tare mode: On the rising edge of RB_Ctrl.bit2, the value of RB_Manual Tare Code is taken as the tare value. The RB_Manual Tare Code also needs to be converted according to the full-scale code value.

8 Measurement function

After completing channel configuration and calibration, obtain the sampled code value from the RB_SampleCode variable, and convert it to the engineering value according to the full-scale code value.

Appendix A Parameter description

Parameter name	Meaning		
Ctrl	[0]: Enable zero calibration (rising edge triggered) [1]: Enable gain calibration (rising edge triggered) [2]: Update tare via software (rising edge triggered) [3]: Restore factory settings (rising edge triggered) [7:4]: Reserved		
Gain Code	Gain calibration code, converted according to the full-scale code value		
Manual Tare Code	Manual tare code, converted according to the full-scale code value		
Status	[0]: Zero calibration status [1]: Gain calibration status [2]: Tare status [7:3]: Reserved		
Sample Code	Channel measurement code value		
Tare Code	hannel tare code value		
Err Id	Channel error code		

Appendix B Fault code

Fault code (decimal)	Fault code (hexadecimal)	Fault type	Solution
1	0x0001	Module configuration fault	Check whether the network configuration corresponds to the physical configuration of the module
2	0x0002	Incorrect module parameter setting	Check whether the module parameter configuration is correct
3	0x0003	Module output port power supply fault	Check whether the module output port power supply is normal
4	0x0004	Module output fault	Check whether the module output port load exceeds the specification range
18	0x0012	Incorrect parameter setting for Channel 0	Check whether the parameter configuration for Channel 0 is correct
20	0x0014	Output fault on Channel 0	Check whether the output of channel 0 is short-circuited or open-circuited
21	0x0015	Signal source open circuit fault on Channel 0	Check whether the physical connection of Channel 0 signal source is normal
22	0x0016	Sampling signal over-limit fault on Channel 0	Check whether Channel 0 sampling signal exceeds the chip limit
23	0x0017		Check whether Channel 0 sampling signal exceeds the measurement upper limit.
24	0x0018		Check whether Channel 0 sampling signal is below the measurement lower limit.
34	0x0022	Incorrect parameter setting for Channel 1	Check whether the parameter configuration for Channel 1 is correct
36	0x0024	Output fault on	Check if the output of Channel 1 is

Fault code (decimal)	Fault code (hexadecimal)	Fault type	Solution		
		Channel 1	short-circuited or open-circuited		
37	0x0025	Signal source open circuit fault on Channel 1	Check the physical connection of		
38	0x0026	Sampling signal over-limit fault on Channel 1	i (heck whether (hannel I samnling)		
39	0x0027	1 0 0	Check whether Channel 1 sampling signal exceeds the measurement upper limit.		
40	0x0028		Check whether Channel 1 sampling signal is below the measurement lower limit.		

Your Trusted Industry Automation Solution Provider

Shenzhen INVT Electric Co., Ltd.

Address: INVT Guangming Technology Building, Songbai Road, Matian, Guangming District, Shenzhen, China

INVT Power Electronics (Suzhou) Co., Ltd.

Address: No. 1 Kunlunshan Road, Science & Technology Town, Suzhou New District, Jiangsu, China

Website: www.invt.com

INVT e-manual

